

XENSIV™ – sensing the world

Pocket guide 2018

Hall switches

TLE/TLI/TLV4961/64/68

Energy-efficient Hall switch family for up to 32 V

Product	Туре	Operating point B _{OP}	Release point B _{RP}	Hysteresis ΔΒ _{HY}	Automotive	Industrial	Consumer	Package
TLE4961-1M/L	Latch	2.0	-2.0	4.0	•	•	•	SOT23/SSO-3-2
TLE4961-2M	Latch	5.0	-5.0	10.0	•	•	•	SOT23
TLE4961-3M/L	Latch	7.5	-7.5	15.0	•	•	•	SOT23/SSO-3-2
TLE4964-1M	Switch	18.0	12.5	5.5	•	•	•	SOT23
TLE4964-2M	Switch	28.0	22.5	5.5	•	•	•	SOT23
TLE4964-3M	Switch	12.5	9.5	3.0	•	•	•	SOT23
TLE4964-5M	Switch	7.5	5.0	2.5	•	•	•	SOT23
TLE4968-1M/L	Bipolar	1.0	-1.0	2.0	•	•	•	SOT23/SSO-3-2
TLE4961-5M	Latch	15.0	-15.0	30.0	•	•	•	SOT23
TLE4961-4M	Latch	10.0	-10.0	20.0	•	•	•	SOT23
TLE4964-4M	Switch	10.0	8.5	1.5	•	•	•	SOT23
TLE4964-6M	Switch	3.5	2.5	1.0	•	•	•	SOT23
TLV4964-1M	Switch	18.0	12.5	5.5	-	-	•	SOT23
TLV4964-2M	Switch	28.0	22.5	5.5	-	-	•	SOT23
TLI4961-1M/L	Latch	2.0	-2.0	4.0	-	•	•	SOT23/SSO-3-2
TLV4961-3M	Latch	7.5	-7.0	15.0	-	-	•	SOT23

TLE/TLI4963/65-xM

5 V high-precision automotive/industrial Hall-effect sensor

Product	Туре	Operating point B _{OP}	Release point B _{RP}	Hysteresis ΔΒ _{HY}	Automotive	Industrial	Package
TLE4963-1M	Latch	2.0	-2.0	4.0	•	-	SOT23
TLE4963-2M	Latch	5.0	-5.0	10.0	•	-	SOT23
TLE4965-5M	Unipolar switch	7.5	5.0	2.5	•	-	SOT23
TLI4963-1M	Latch	2.0	-2.0	4.0	-	•	SOT23
TLI4963-2M	Latch	5.0	-5.0	10.0	-	•	SOT23
TLI4965-5M	Unipolar switch	7.5	5.0	2.5	-	•	SOT23

Hall switches

TLV496x-xTA/B

Precision Hall-effect sensor for consumer applications in leaded package

Product	Туре	Operating point B _{OP}	Release point B _{RP}	Hysteresis ΔΒ _{HY}	Consumer	Package
TLV4961-1TA	Latch	2.0	-2.0	4.0	•	TO92S-3-1
TLV4961-1TB	Latch	2.0	-2.0	4.0	•	T092S-3-2
TLV4961-3TA	Latch	7.5	-7.5	15.0	•	TO92S-3-1
TLV4961-3TB	Latch	7.5	-7.5	15.0	•	T092S-3-2
TLV4964-4TA	Unipolar switch	10.0	8.5	1.5	•	TO92S-3-1
TLV4964-4TB	Unipolar switch	10.0	8.5	1.5	•	T092S-3-2
TLV4964-5TA	Unipolar switch	7.5	5.0	2.5	•	TO92S-3-1
TLV4964-5TB	Unipolar switch	7.5	5.0	2.5	•	T092S-3-2
TLV4968-1TA	Latch	1.0	-1.0	2.0	•	TO92S-3-1
TLV4968-1TB	Latch	1.0	-1.0	2.0	•	T092S-3-2

TLE4966x

Two-in-one double Hall sensor, vertical dual-Hall sensor

Product	Туре	Operating point B _{OP}	Release point B _{RP}	Hysteresis ΔΒ _{ΗΥ}	Automotive	Package
TLE4966K/L	Double Hall, speed and direction output	7.5	-7.5	15	•	TSOP6/SSO-4-1
TLE4966-2K	Double Hall, two independent outputs	7.5	-7.5	15	•	TSOP6
TLE4966-3K	Double Hall, speed and direction output	2.5	-2.5	5	•	TSOP6
TLE4966V-1K	Vertical double Hall, speed and direction output	2.5	-2.5	5	•	TSOP6

TLE/TLI/TLV49x6 family

High-precision Hall switches

Product	Туре	Operating point B _{OP}	Release point B _{RP}	Hysteresis ΔB _{HY}	Automotive	Industrial	Consumer	Package
TLE4906K/L	Unipolar switch	10.0	8.5	1.5	•	•	_	SC59/SSO-3-2
TLE4906-2K	Unipolar switch	18.0	12.5	5.5	•	•	-	SC59
TLE4906-3K	Unipolar switch	28.0	22.5	5.5	•	•	-	SC59
TLE4946K	Latch	14.0	-14.0	28.0	•	•	-	SC59
TLE4946-1L	Latch	15.0	-15.0	30.0	•	•	_	SSO-3-2
TLE4946-2K/L	Latch	2.0	-2.0	4.0	•	•	-	SC59/SSO-3-2
TLE4976L	Unipolar switch/ Current interface	6.0	4.0	2.0	•	•	_	SSO-3-2
TLE4976-1K	Unipolar switch/ Current interface	9.25	7.25	2.0	•	•	-	SC59
TLE4976-2K	Unipolar switch/ Current interface	4.5	2.7	1.8	•	•	-	SC59
TLV4946-2K	Unipolar switch	18.0	12.5	5.5	-	-	•	SC59
TLV4976-2K	Unipolar switch / Current interface	4.5	2.7	1.8	-	-	•	SC59

3D magnetic sensors

TLV493D-A1B6/TLI493D-A2B6

3D magnetic sensors for consumer and industrial applications

Product	t	Temperature range	Qualification	Linear magnetic range	Resolution	I _{DD}	Update rate	Package	Ordering code
TLV4930	D-A1B6	-40 125°C	JESD47	±130 mT (typ)	98 μT/LSB	7 nA – 3.7 mA	10 Hz – 3.3 kHz	TSOP6	SP001286056
TLI493D)-A2B6	-40 105°C	JESD47	±160 mT (min) ±100 mT (min)	130 μT/LSB (65 μT/LSB) ¹⁾	7 nA – 3.3 mA	10 Hz – 8.4 kHz	TSOP6	SP001689844

¹⁾ Half range mode

TLE493D-A2B6/W2B6

3D magnetic sensors for automotive low-power applications

Product	Temperature range	Qualifi- cation	Linear magnetic range (min)	Resolution	I _{DD}	Update rate	ISO 26262	Wake- up	Package	Ordering code
TLE493D-A2B6	-40 125°C	AEC-Q100	±160 mT	130 μT/LSB (65 μT/LSB) ¹⁾	7 nA to 3.3 mA	10 Hz to 8.4 kHz	_	No	TSOP6	SP001689848
TLE493D-W2B6 A0 TLE493D-W2B6 A1 TLE493D-W2B6 A2 TLE493D-W2B6 A3	-40 125°C	AEC-Q100	±160 mT ±100 mT	130 μT/LSB (65 μT/LSB) ¹⁾	7 nA to 3.3 mA	0.05 Hz to 8.4 kHz	Ready	Yes	TSOP6	SP001655334 SP001655340 SP001655344 SP001655348

¹⁾ Half range mode

Linear Hall sensors

TLE499x family

Programmable analog/digital linear Hall sensor family

Product	Program- mable	Number of pins	Sensitivity	Magnetic offset	Supply voltage (extended range)	ISO 26262	Auto- motive	Interface	Package
TLE4997	EEPROM	3/ Single die SMD 8	±12.5 to ±300	< ±400 μT	5 V ±10% (7 V)	Ready	•	Analog	SSO-3-10 TDSO-8
TLE4998P	EEPROM	3/4/ Single die SMD 8	±0.2 to ±6%/mT	<±400 μT	5 V ±10% (16 V)	Ready	•	PWM	SSO-3-10 SSO-4-1 SSO-3-9 (2 capacitors) TDSO-8
TLE4998S	EEPROM	3/4/ Single die SMD 8	±8.2 to ±245 LSB/mT	<±400 μT	5 V ±10% (16 V)	Ready	•	SENT	SSO-3-10 SSO-4-1 SSO-3-9 (2 capacitors) TDSO-8
TLE4998C	EEPROM	3/4/ Single die SMD 8	±8.2 to ±245 LSB/mT	<±400 μT	5 V ±10% (16 V)	Ready	•	SPC	SSO-3-10 SSO-4-1 SSO-3-9 (2 capacitors) TDSO-8

Two sensors in one SMD package

Linear Halls

Product	Interface	Dual-/single-sensor available	ISO 26262	Package
TLE4997A8D	Analog	yes/yes	Ready	TDSO-8
TLE4998P8D	PWM	yes/yes	Ready	TDSO-8
TLE4998S8D	SENT	yes/yes	Ready	TDSO-8
TLE4998C8D	SPC	yes/yes	Ready	TDSO-8

Angle sensors

iGMR, iAMR and iTMR based angle sensors

Diverse redundant sensor with analog and digital interface

Product	Technology	Die configuration	ISO 26262	Sin/cos output	Angle output	Second interface	Accuracy	Package
TLE5009	GMR	Single die	Ready	Analog sin/cos	_	_	0.9°	DSO-8
TLE5009A16(D)	GMR	Dual die	Ready	Analog sin/cos	_	_	1.0°	TDSO-16
TLE5011	GMR	Single die	Ready	SSC (SPI)	_	_	1.6°	DSO-8
TLI5012B	GMR	Single die	Ready	SSC (SPI)	SSC (SPI)	PWM/IIF/SPC/HSM	1.9°	DSO-8
TLE5012B(D)	GMR	Single & dual die	Ready	SSC (SPI)	SSC (SPI)	PWM/IIF/SPC/HSM	1.0°	DSO-8/ TDSO-16
TLE5014C16(D)	GMR	Single & dual die	Compliant	_	SPC	_	1.0°	TDSO-16
TLE5014P16(D)	GMR	Single & dual die	Compliant	_	PWM	_	1.0°	TDSO-16
TLE5014S16(D)	GMR	Single & dual die	Compliant	-	SENT	_	1.0°	TDSO-16
TLE5109A16(D)	AMR	Single & dual die	Ready	Analog sin/cos	-	_	0.5°	TDSO-16
TLE5309D	AMR + GMR	Dual die	Ready	Analog sin/cos	SSC (SPI)	-	AMR 0.5°, GMR 1.0°	TDSO-16
TLE5501	TMR	Single die	Compliant	Analog sin/cos	-	-	1.0°	DSO-8

Magnetic speed sensors

The speed sensing family

Product	Sensor technology	AEC-Q100 qualified	RoHS	HAL free	Automotive	Industrial	Product status
TLE4921	Differential Hall	•	•	_	•	•	In production
TLE4922	Mono-Hall	•	•	•	•	•	In production
TLE4924	Differential Hall	•	•	_	•	•	In production
TLE4926	Differential Hall	•	•	-	•	-	In production
TLE4927	Differential Hall	•	•	_	•	•	In production
TLE4928	Differential Hall	•	•	-	•	-	In production
TLE4941	Differential Hall	•	•	-	•	_	In production
TLE4941plusC	Differential Hall	•	•	•	•	-	In production
TLE4942	Differential Hall	•	•	_	•	_	In production
TLE4943	Differential Hall	•	•	•	•	-	In production
TLE4953	Differential Hall	•	•	_	•	_	In production
TLE4955	Differential Hall	•	•	•	•	-	In production
TLE4957	Differential Hall	•	•	_	•	_	In production
TLE4959	Differential Hall	•	•	•	•	-	In production
TLE4983	Mono-Hall	•	•	-	•	_	In production
TLE4984	Mono-Hall	•	•	-	•	-	In production
TLE4986	Mono-Hall	•	•	-	•	_	In production
TLE5025	iGMR differential	•	•	•	•	-	In production
TLE5027	iGMR differential	•	•	_	•	_	In production
TLE5028	iGMR differential	•	•	•	•	-	In production
TLE5041plusC	iGMR differential	•	•	•	•	_	In production
TLE5045	iGMR differential	•	•	-	•	-	In production
TLE5046	iGMR differential	•	•	_	•	_	In production

Magnetic speed sensors

Overview of magnetic speed sensors

	Icon/ Description	TLE4921	TLE4922	TLE4924	TLE4926	TLE4927	TLE4928	TLE4929	TLE4941	TLE4941plusC	TLE4942	TLE4943	TLE4953
	Wheel speed	_	•	_	_	_	_	_	•	•	•	•	_
	Camshaft	_	•	•	_	•	_	_	_	-	_	_	_
Automotive	Crankshaft	•	•	•	•	•	•	•	_	_	_	_	_
	Transmission	•	•	_	_	_	_	_	•	•	•	_	•
 Industrial	Transmission	•	•	•	_	•	•	•	_	•	_	_	_
Sensor		Diff. Hall	Mono-Hall	Diff. Hall	Diff. Hall	Diff. Hall	Diff. Hall						
technology													
Improved air gap/jitter performance	_ ‡	_	_	_	_	_	_	•	_	-	-	_	-
Direction information available		-	-	-	-	-	-	•	-	-	•	•	•
True Power On (TPO)		-	-	-	_	-	_	-	-	-	_	-	-
Twist- Independent Mounting (TIM)		-	•	-	-	-	-	-	-	-	-	-	-
Vibration suppression algorithm included	*	-	-	-	-	-	-	•	-	-	-	-	•
Type of	(III	V	Н	V	Н	Н	Н	Н	Н	Н	Н	Н	V
hysteresis ¹⁾		F	А	A/F	F	А	F	А	F	F	F	А	А
	# of pins	4	4	3	3	3	3	3	2	2	2	2	2
Interface ²⁾	Interface	V	V	V	V	V	V	V	С	С	С	С	С
	Protocol	S	Р	S	S	S	S		S	S	Р	AK	Р
Electrostatic Discharge (ESD)	Human Body Model (HBM)	2 kV	4 kV	6 kV	6 kV	6 kV	6 kV	6 kV	12 kV	12 kV	12 kV	12 kV	12 kV
Package without integrated capacitor	T	•	•	-	-	-	•	-	•	-	-	-	•
Package with integrated capacitor	Ŧ	-	-	•	•	•	•	•	-	•	•	•	•

¹⁾ H = Hidden; V = Visible; F = Fixed; A = Adaptive; P = Programmable

²⁾ AK = AK protocol; C = Current; V = Voltage interface; S = Single pulse; P = PWM protocol

TLE4055												
-	TLE4955	TLE4957	TLE4959	TLE4983	TLE4984	TLE4986	TLE5025	TLE5027	TLE5028	TLE5041plusC	TLE5045	TLE5046
- - - - - - - - - -	-	_	_	_	-	-	-	-	-	•	•	•
• • • - - - - - - -	-	-	-	•	•	•	•	-	-	-	-	-
Diff. Hall Diff. Hall Diff. Hall Mono-Hall Mono-Hall IGMR IGMR	-	•	-	-	-	-	•	•	•	-	-	-
Diff. Hall Diff. Hall Diff. Hall Mono-Hall Mono-Hall IGMR IGMR	•	•	•	-	-	-	-	-	-	-	-	-
	-	_	_	-	-	-	-	-	-	_	-	-
	Diff. Hall	Diff. Hall	Diff. Hall	Mono-Hall	Mono-Hall	Mono-Hall	iGMR	iGMR	iGMR	iGMR	iGMR	iGMR
	-	_	•	_	_	_	•	•	•	•	•	•
	•	-	•	-	-	-	-	•	•	-	-	•
• • • -	-	-	-	•	•	•	-	-	-	-	-	-
V V/H V H H V/H H <td>-</td> <td>-</td> <td>_</td> <td>•</td> <td>•</td> <td>•</td> <td>-</td> <td>_</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td>	-	-	_	•	•	•	-	_	_	-	-	-
A A A F F P/A A A A F A A 2 3 3 3 3 3 3 3 2 2 2 2 C V V V V V V V C C C C P S P S S S S P P P S S P/AK 12 kV 6 kV 6 kV 4 kV 6 kV 8 kV 8 kV 8 kV 12 kV 12 kV 12 kV	•	•	•	-	-	-	-	-	-	-	-	-
2 3 3 3 3 3 3 3 3 3 2	V	V/H	V	Н	Н	V/H	Н	Н	Н	Н	Н	Н
C V V V V V V V V C C C C P S P P P S S P/AK 12 kV 6 kV 6 kV 4 kV 6 kV 8 kV 8 kV 8 kV 12 kV 12 kV 12 kV • -	A	А	А	F	F	P/A	А	А	А	F	А	А
P S P S S S S P P S S P/AK 12 kV 6 kV 6 kV 4 kV 6 kV 8 kV 8 kV 8 kV 12 kV 12 kV 12 kV • -	2	3	3	3	3	3	3	3	3	2	2	2
12 kV 6 kV 6 kV 4 kV 4 kV 6 kV 8 kV 8 kV 12 kV 12 kV 12 kV 12 kV	С	V	V	V	V	V	V	V	V	С	С	С
	Р	S	Р	S	S	S	S	Р	Р	S	S	P/AK
	12 kV	6 kV	6 kV	4 kV	4 kV	6 kV	8 kV	8 kV	8 kV	12 kV	12 kV	12 kV
	•	-	-	-	-	-	-	-	-	-	•	•
	•	•	•	•	•	•	•	•	•	•	-	-

Magnetic speed sensors

TLE4924/26/27/28C

High-performance speed sensor family

Product	Hysteresis	Comment	Standard
TLE4924C-1	Visible fixed	-	SSO-3-9
TLE4924C(B)-2	Visible adaptive	-	SSO-3-9
TLE4926C	Hidden fixed	-	SSO-3-9
TLE4926C-HT	Hidden fixed	High temperature profile	SSO-3-9
TLE4927C(B)	Hidden adaptive	_	SSO-3-9
TLE4928C	Hidden fixed	200 ms watchdog reset	SSO-3-9

TLE4941plusC/TLE4942-1C/TLE4943C/TLE5045iC/TLE5046iC

Safety first - wheel speed sensors

Product	Sensor technology	Pole wheel	Steel wheel	Direction detection	Protocol	iTPMS
TLE4941plusC	Hall differential	•	•	-	Standard	-
TLE4942-1C	Hall differential	•	•	•	PWM	-
TLE4943C	Hall differential	•	•	•	AK	-
TLE5045iC	iGMR differential	•	-	-	Standard	•
TLE5046iC-PWM	iGMR differential	•	-	•	PWM	•
TLE5046iC-AK	iGMR differential	•	-	•	AK	•

TLI/TLE4970

High-precision current sensors

Product	Accuracy 1)	Current range [A]	Bandwidth [kHz]	Resolution [mA/LSB]	Automotive	Industrial	Package
TLI4970-D050T4	±1.6	±50	18	12.5	_	•	TISON-8
TLI4970-D050T5	±3.5	±50	18	12.5	-	•	TISON-8
TLI4970-D025T4	±1.6	±25	18	6.25	-	•	TISON-8
TLI4970-D025T5	±3.5	±25	18	6.25	-	•	TISON-8
TLE4970-D050T4	±1.6	±50	18	12.5	On request	-	TISON-8
TLE4970-D025T4	±1.6	±25	18	6.25	On request	-	TISON-8

¹⁾ Total error over lifetime and temperature

Integrated pressure sensor ICs

Integrated pressure sensor ICs for manifold and barometric air pressure

Product	Pressure range [kPa]	Max. accuracy [kPa]	Max. operating temperature [°C]	Automotive	Industrial
KP21x	10 115	1.0	140	•	•
KP22x	10 400	2.5	140	•	•
KP23x	40 115	1.0	125	•	•
KP236N6165	60 165	1.0	125	•	•
KP253	60 165	1.0	125	•	•
KP254	40 115	1.5	125	•	•
KP255	10 125	1.4	140	•	•
KP256	60 165	1.0	125	•	•
KP275	10 400	3.0	170	•	•

KP200/KP201/KP204

PSI5 PRO-SIL™ ready pressure sensor ICs for side crash detection and pedestrian protection

Product	PRO-SIL™ support in line with IEC 61508 and ISO 26262	ISO 26262
KP200/KP201/KP204	> KP201 qualified for higher operating temperatures up to 125°C	Ready
	> KP204 with 4-hole lid supporting insect intrusion	

More information on PRO-SIL™ can be found at www.infineon.com/prosil

SP270-25-256-0

Pressure sensor with integrated low power microcontroller

Parameter	Values		Unit	Note/test condition
	Min.	Max.		
Input pressure range	100	500	kPa	T = -40 125°C
Measurement error	-21	+21	kPa	T = 25 80°C
100 500 kPa	-46	+46	kPa	T = -40 125°C
Input pressure range	500	1300	kPa	T = -40 125°C
Measurement error	-31	+31	kPa	T = 25 80°C
500 1300 kPa	-60	+60	kPa	T = -40 125°C
	-3	+3	°C	T = -20 70°C
Temperature measurement error	-5	+5	°C	T = -4020°C T = 70 125°C

Digital pressure sensor ICs

DPS310/DPS368/ DPS422

Digital barometric air pressure sensor

Key product features	DPS310/DPS368 ¹⁾	DPS422 ²⁾		
Operating pressure range	300 1200 hPa			
Operating temperature range	-40 85°C			
Pressure level precision	± 0.005 hPa	(or ±0.05 m)		
Relative accuracy/Absolute accuracy	± 0.06 hPa (or ±0.5 r	n)/± 1 hPa (or ±8 m)		
Temperature accuracy	0.5°C	< 0.4°C		
Pressure temperature sensitivity	0.5 Pa/K			
Measurement time	3.6 ms (low precision); 2	7.6 ms (standard mode)		
Average current consumption @ 1 Hz sampling rate	1.7 μA for pressure measurement/1.5 μA for temperature measurement (0.5 μA standby)	1.7 μA for pressure measurement/2.0 μA for temperature measurement (1.0 μA standby)		
Supply voltage	V _{DDIO} : 1.2-3.6 V; _{VDD} : 1.7-3.6 V			
Operating modes	Command (manual), background (automatic), standby			
Interface	I ² C and SPI, both wit	th optional interrupt		
Package	8 pins LGA: 2.0 x 2.5 x 1.0 mm (DPS310) 8 pins LGA: 2.0 x 2.5 x 1.1 mm (DPS368)	8 pins LGA: 2.0 x 2.5 x 0.73 mm		

¹⁾ Available Q1 2019 2) Available Q3 2018

Tire pressure sensors

SP40

Tire pressure sensor for Tire Pressure Monitoring Systems (TPMS)

Product	Pressure range [kPa]	On-chip flash memory [kB]	Key features	
SP400-11-01	100-900	12	> Highest integration> Very low energy consumption	
SP400-11-11	100-900	12 + 2	> Robust g- and p-sensor > High LF sensitivity	

SP37

TPMS sensor for trucks and commercial, construction and agricultural vehicles (CAV)

Product	Pressure range [kPa]	On-chip flash memory [kB]
SP370-23-156-0	100-1.300	6

RASIC™ – automotive radar sensor ICs

77/79 GHz automotive RADARs

Product	Configuration	Key benefits	Features	
RXS8160PL	3Tx4Rx	Cascadable from single- to multi-chip	> Flexible FMCW waveform generation > 2 GHz modulation bandwidth	
RXS8150PL	2Tx4Rx	Cost efficient solution for corner radars	 > Four receive channels featuring integrated filters + AD converters > 4 channel LVDS data interface > Robust eWLB package (7 x 8.5 mm) 	

24 GHz radar sensor ICs

BGT24M/L family of MMIC chips

Product	Configuration	Key benefits	Features
BGT24MTR11	1Tx + 1Rx	32 pin leadless RoHs compliant VQFN package	 Measures not just motion, but also speed, direction, and distance Small form factor
BGT24MR2	2Rx	Twin receiver	Resistance to moisture, dirt and temperature Increased area coverage Discrete design
BGT24MTR12	1Tx + 2Rx	On chip power and temperature sensors	 Discrete design Energy savings Privacy protection
BGT24LTR11	1Tx + 1Rx	Low power consumption	Adaptable to different application requirements Highly integrated chips eliminating costly external components

MEMS microphones

High Performance MEMS microphones

Product	Current consumption	Sensitivity	Signal to Noise	АОР	Features
IM69D120	980 µA	-26 dBFS	69 dB	120 dBSPL	 69 dB(A) signal-to-noise ratio (for < 20 bit encoding systems IM69D120 required) Below 1 percent distortions at 128 dBSPL (AOP – 130 dBSPL)
IM69D130	980 μΑ	-36 dBFS	69 dB	130 dBSPL	 Digital (PDM) interface with 6 µs group delay at 1 kHz Tight sensitivity (-36 ±1 dB) and phase (±2 deg) tolerances 28 Hz low frequency roll-off

Shields 2GO

Product name	Sales name	SP number
OPTIGA™ Trust E Security Shield2Go	S2Go_Security_OPTIGA_E	SP001820138
TLV493D 3DSense Shield2Go	S2GO_3D-SENSE_TLV493D	SP001823678
DPS310 Pressure	S2GO_PRESSURE_DPS310	SP001777630
TLI4970 Current Sense Shield2Go	S2GO_CUR-SENSE_TLI4970	SP001823682
XMC 2Go Kit	KIT_XMC_2GO_XMC1100_V1	SP001199544
MyIoT Adapter	MYIOTADAPTERTOBO1	SP002434972

2GO evaluation kits

Sensors 2GO

Product name	Target application	Product status
JOYSTICK FOR 3D 2 GO KIT	Automotive, industrial, consumer	SP001491834
LINEAR-SLIDER 2GO	Automotive, industrial, consumer	SP002043034
ROTATE KNOB 3D 2 GO KIT	Automotive, industrial, consumer	SP001504602
TLE4922 MS2GO	Automotive	SP001624692
TLE493D-A2B6 MS2GO	Automotive	SP001707582
TLE493D-W2B6 MS2GO	Automotive	SP001707578
TLV493D-A1B6 MS2GO	Industrial, consumer	SP001707574
TLI4970050 MS2GO	Industrial, consumer	SP003119148

MEMS 2GO

Product name	Target application	Product status
EVAL_IM69D130_FLEXKIT	Consumer	SP002153022

Functional safety

What does ISO 26262 compliant mean?

Infineon PRO-SIL™ ISO 26262-compliant safety sensors fulfil the properties required by the ISO 26262 (Automotive Safety) Standard. PRO-SIL™ ISO 26262-compliant product development follows a product specific safety plan defined by Infineon. The product development follows the Infineon V-model based development lifecycle which encompasses all ISO 26262 required activities and work products related to the product scope. Product relevant safety requirements and required metrics are captured and verified through the development of the product, this includes the product safety concept and ultimately a product safety case which provides the argumentation and evidence showing achievement of the defined safety requirements and process compliance, including all essential supporting processes.

An independent functional safety management organization supports the ISO 26262 conform safety lifecycle.

For ISO 26262-compliant products a Safety Manual and a Safety Analysis Summary Report can be delivered to our customers* in addition to Infineon standard documentation:

Moreover Infineon offers expert support for system integrators to achieve the required ASIL on system level. Infineon's activities result in a simplified integration in safety-related applications.

What does ISO 26262 ready mean?

Infineon PRO-SIL™ ISO 26262-ready sensors are developed according to Infineon's sophisticated Automotive Development and Quality Standards. For ISO 26262-ready products additional functional safety analysis will be provided. ISO 26262-ready enables our customers to use Infineon's (QM) Products in safety related applications.

Infineon PRO-SIL™ ISO 26262-ready sensors are developed according to Infineon's sophisticated Automotive Development and Quality Standards. For ISO 26262-ready products additional functional safety analysis will be provided. ISO 26262-ready enables our customers to use Infineon's (QM) products in safety related applications.

Where to buy

Infineon distribution partners and sales offices: www.infineon.com/WhereToBuy

Service hotline

Infineon offers its toll-free 0800/4001 service hotline as one central number, available 24/7 in English, Mandarin and German.

- > Germany 0800 951 951 951 (German/English)

- > USA 1-866 951 9519 (English/German)
- > Direct access+49 89 234-0 (interconnection fee, German/English)

^{*} Please note: Some countries may require you to dial a code other than "00" to access this international number. Please visit www.infineon.com/service for your country!

Mobile product catalog

Mobile app for iOS and Android.

www.infineon.com

Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All rights reserved.

Please note

THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND ANY INFORMATION GIVEN HEREIN SHALL IN NO EVENT BE REGARDED AS A WARRANTY, GUARANTEE OR DESCRIPTION OF ANY FUNCTIONALITY, CONDITIONS AND/OR QUALITY OF OUR PRODUCTS OR ANY SUITABILITY FOR A PARTICULAR PURPOSE. WITH REGARD TO THE TECHNICAL SPECIFICATIONS OF OUR PRODUCTS, WE KINDLY ASK YOU TO REFER TO THE RELEVANT PRODUCT DATA SHEETS PROVIDED BY US. OUR CUSTOMERS AND THEIR TECHNICAL DEPARTMENTS ARE REQUIRED TO EVALUATE THE SUITABILITY OF OUR PRODUCTS FOR THE INTENDED APPLICATION.

WE RESERVE THE RIGHT TO CHANGE THIS DOCUMENT AND/OR THE INFOR-MATION GIVEN HEREIN AT ANY TIME.

Additional information

For further information on technologies, our products, the application of our products, delivery terms and conditions and/or prices, please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements, our products may contain dangerous substances. For information on the types in question, please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by us in a written document signed by authorized representatives of Infineon Technologies, our products may not be used in any life-endangering applications, including but not limited to medical, nuclear, military, life-critical or any other applications where a failure of the product or any consequences of the use thereof can result in personal injury.

Order number: B142-I0675-V1-7600-EU-EC-P Date: 08 / 2018