

25 – 150 V Source-down technology in PQFN 3.3 x 3.3

Kevin Ream (IFAM PSS DCDC PD PMG BE) December 2021

Table of contents

What is Source-down?
25 V Source-down example
Performance overview
Portfolio outlook and summary
16

What is Source-down?
2 25 V Source-down example
Performance overview
Portfolio outlook and summary
16

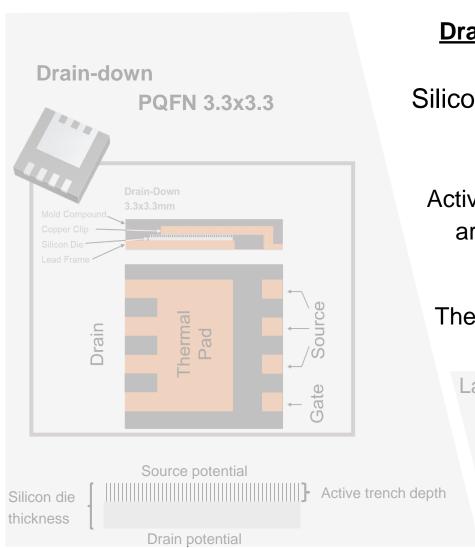
Why source-down?

MOSFET performance is limited by two dimensions:

- Silicon technology
- Package limmitations

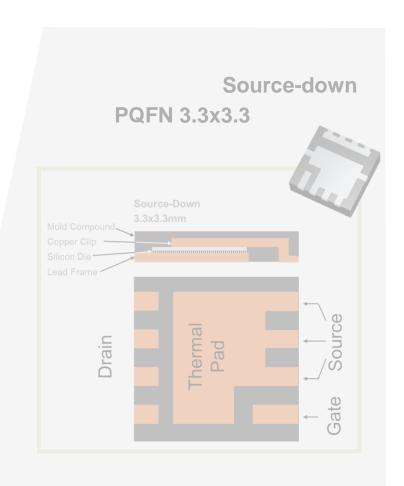
General trends in Power Management


- 1. Higher efficiency
- 2. Higher power density
- 3. BOM (Bill Of Material) cost reduction


New source-down, industry standard package enables higher power density by:

- > Lower R_{DS(on)} in PQFN 3.3x3.3 mm² package-outline
- Improved thermal performance
- More effective layout for thermal management

Drain-down vs. Source-down


Drain-down vs. Source-down

Silicon die is flipped upside-down

Active trenchnes on the silicon die are connected to lead frame

Thermal pad on source potential

Drain Orain Gate Source Sourc

*Offering easy drop in replacement

Table of contents

What is Source-down?
25 V Source-down example
Performance overview
Portfolio outlook and summary
16

Examples: standard drain-down vs. source-down

Drain-down

e.g. BSZ010NE2LS5 or BSZ009NE2LS5

Features:

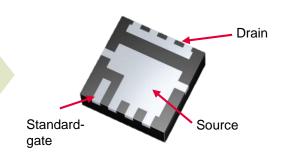
- > PQFN 3.3 x 3.3 mm² package size
- Best in class R_{DS(on)} and FOM
- \rightarrow BSZ010NE2LS5 R_{DS(on)} = 1.0 m Ω
- \rightarrow BSZ009NE2LS5 R_{DS(on)} = 0.9 mΩ (Or-ing optimized)

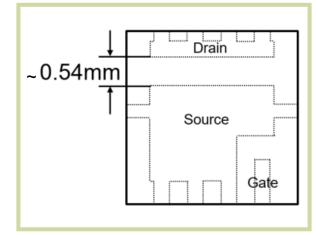
Source-down

e.g. IQE006NE2LM5

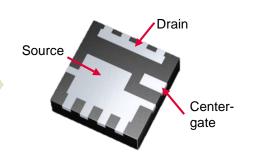
Features:

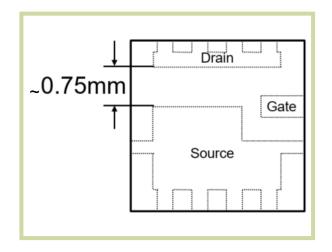
- Standardgate Source
- > PQFN 3.3 x 3.3 mm² package size
- > New best in class $R_{DS(on)} = 0.65 \text{ m}\Omega$
- > High continuous (I_D=298 A) and pulse current (1192 A) capability
- Superior thermal resistance R_{thJC} = 1.4°C/W for source-down vs. 1.8°C/W for drain-down


Parameter	BSZ009NE2LS5	BSZ010NE2LS5	IQE006NE2LM5	Unit
V _{DS}	25	25	25	V
R _{DS(on),max}	0.9	1.0	0.65	mΩ
R_{thJC}	1.8	1.8	1.4	°C/W
I_{D}	40	40	298	Α
FOM_{Qg}	111.6	60.0	53.4	mΩ*nC


Source-down PQFN 3.3 x 3.3 mm² in 25 V Source-down standard-gate vs. source-down center-gate

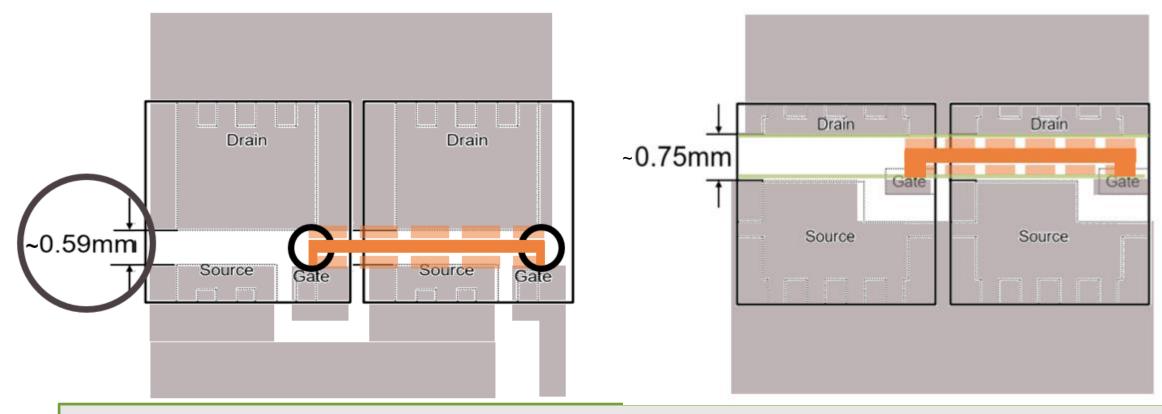
Source-down standard-gate (PG-TSON-8-4)


- Offering the source-down benefits
- Based on the existing PQFN 3.3 x 3.3 mm² pinout configuration
- Easy to adapt on existing PCB layout



Source-down center-gate (PG-TTFN-9-1)

- Offering the source-down benefits
- Provides a layout option for optimized parallelization of MOSFETs
- Increased source pad improves connection area



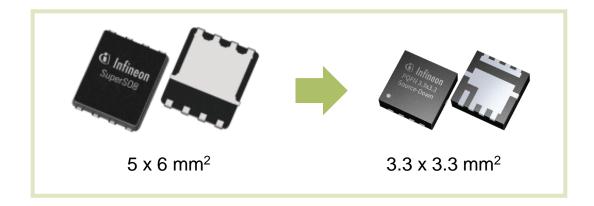
Drain-down vs. source-down center-gate parallelization comparison

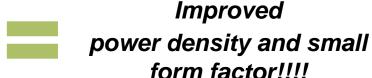
Drain-down Standard footprint parallelization (PQFN 3.3x3.3)

Source-down footprint Center-gate parallelization

Parallelization of MOSFETs

> The center-gate layout option enables easier paralleling with its larger drain to source creepage distance

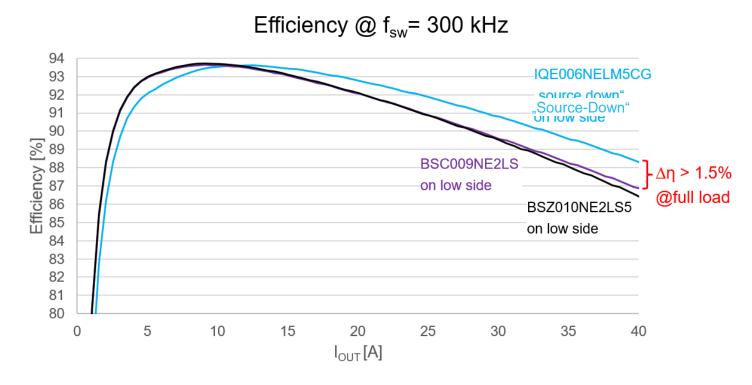

1	What is Source-down?	3
2	25 V Source-down example	6
3	Performance overview	10
4	Portfolio outlook and summary	16

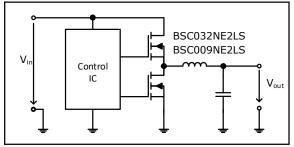

Performance overview: lower R_{DS(on)}

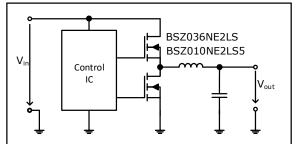
Industry Benchmark in R_{DS(on)} for small form factor

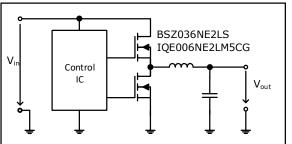
- Reduction of R_{DS(on)} up to 30% compared to SSO8 in 5x6 (BSC009NE2LS5)
- Lower I²R losses
- Significant shrink of form factor / performance of a 5 x 6 mm² Super SO8 (PQFN) in only 3.3 x 3.3 mm²
- More effective use of real estate
- Cooler design (less losses)

Part number	V _{DS}	Package	RDS(on) max @ 10 V _{GS}
BSC009NE2LS5	25	SS08 5x6	0.9 mΩ
IQE006NE2LM5	25	Source down 3x3	0.65 mΩ

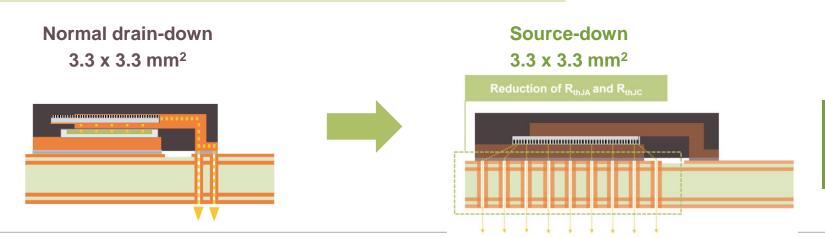



Efficiency benefits


- Lower R_{DS(on)}
 - Limits the I²R losses
- Lower package parasitics
 - Leads to better FOM
- Decreased R_{thJC}
 - Results in improved thermal behavior


Higher efficiency!!

Efficiency measurments on Sync Buck converter @ 300 kHz

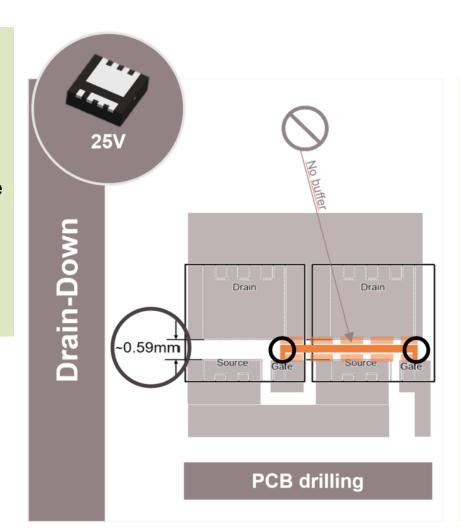


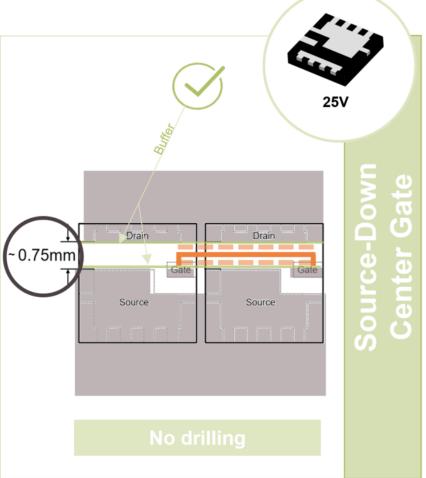
Optimized thermal management

- Source-down concept enables direct connection of active area to leadframe => reduction of R_{th,IC}
- Thermal pad is connected to source potential
 - Can be connected directly to the ground plane
 (i.e. for a low-side FET in a H-Bridge configuration)
 - Thermal vias can be used to connect to other layers
 > Decrease of the R_{thJA} and R_{thJC}
 (areas connected to GND does not need to be minimized)

Improved thermal capability!!

Heat can be sent efficiently into ground plains instead of switch node

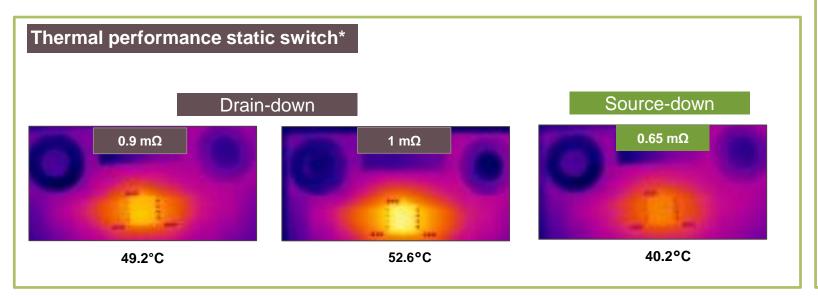




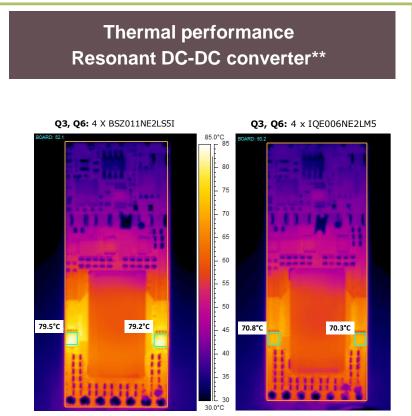
Layout comparison

- Layout is optimized for the parallelization of MOSFETs
- > Easy and efficient parallelization
- Center-gate allows the connection of gates for paralleling on the same layer
- Same performance for sourcedown with 0.65 mOhm in 25 V compared to a 5x6 product -> board space is saved

Optimized layout possibilities!!


Thermal benefits

- > Lower R_{DS(on)} limits the I²R losses
- Lower FOM Qg reduces switching losses
- Decreased R_{thJC} improves cooling behaviour


cooler design

*measurements at 25°C, 30 A static current

**thermal behavior of HSC at 450 W from 48 V input:

- a) with BSZ011NE2LS5I
- b) with IQE006NE2LM5 ($T_{amb} = 24$ °C and v = 3.3 m/s)

1	What is Source-down?	3
2	25 V Source-down example	6
3	Performance overview	10
4	Portfolio outlook and summarv	16

2021-12-23

Initial Product Portfolio (Source-Down PQFN 3x3)

Target Release Schedule

		Standard Gate		Standard Gar	Standard Gate DSC Center-G		ate	Center-Gate DSC	
		El Infineon Source-Down Source-Down	Drain Source	Orain POFN 3 33-3 Source DSC DSC Own		Center-Gate		Center-Gare	
				Double-Side Cooling capabillit				Double-Side Cooling capabillity	
Voltage Class	Target Rdson [mOhm]	Sales Name Standard gate	Target Release schedule	Sales Name Standard Gate DSC	Target Release schedule	Sales Name Center-Gate	Target Release schedule	Sales Name Center-Gate DSC	Target Release schedule
25V	≤0,6	IQE006NE2LM5	released	IQE006NE2LM5SC	Q3/CY2022	IQE006NE2LM5CG	released	IQE006NE2LM5CGSC	Q3/CY2022
30V	≤0,7	IQE008N03LM5	released	IQE008N03LM5SC	Q3/CY2022	IQE008N03LM5CG	released	IQE008N03LM5CGSC	Q3/CY2022
40V	≤1,3	IQE013N04LM6	released	IQE013N04LM6SC	Q3/CY2022	IQE013N04LM6CG	released	IQE013N04LM6CGSC	Q3/CY2022
60V	≤3,0	IQE030N06NM5	released	IQE030N06NM5SC	Q3/CY2022	IQE030N06NM5CG	released	IQE030N06NM5CGSC	Q3/CY2022
80V	≤6,0	IQE050N08NM5	released	IQE050N08NM5SC	Q3/CY2022	IQE050N08NM5CG	released	IQE050N08NM5CGSC	Q3/CY2022
100V	≤7,5	IQE065N10NM5	released	IQE065N10NM5SC	Q3/CY2022	IQE065N10NM5CG	released	IQE065N10NM5CGSC	Q3/CY2022
150V	≤22	IQE220N15NM5	Q2/CY2022	IQE220N15NM5SC	Q4/CY2022	IQE220N15NM5CG	Q2/CY2022	IQE220N15NM5CGSC	Q4/CY2022

Preliminary Information. Subject to change.

Initial Product Portfolio (Source-Down PQFN 3x3) **Sample Schedule (Target)**

	Standard gate		Standard Gat	te DSC	Center-Gate		Center-Gate DSC			
		Infineon Source-Down	Orain Source	FOFN 3-3%3 3 DSC OWN	D _{rain} So _{urce}	Infineon Source-Down Center-Gate	Orain G Ource	Infineon Source 3 3x3 3 Center-Gate	Drain G Source	
				Double-Side Cooling capabillit	у				Double-Side Cooling capabillity	
Voltage Class	Target Rdson [mOhm]	Sales Name Standard gate	ES Sample Schedule	Sales Name Standard Gate DSC	ES Sample Schedule	Sales Name Center-Gate	ES Sample Schedule	Sales Name Center-Gate DSC	ES Sample Schedule	
25V	≤0,6	IQE006NE2LM5	avialalble	IQE006NE2LM5SC	avialalble	IQE006NE2LM5CG	avialalble	IQE006NE2LM5CGSC	avialalble	
30V	≤0,7	IQE008N03LM5	avialalble	IQE008N03LM5SC	avialalble	IQE008N03LM5CG	avialalble	IQE008N03LM5CGSC	avialalble	
40V	≤1,3	IQE013N04LM6	available	IQE013N04LM6SC	avialalble	IQE013N04LM6CG	avaialble	IQE013N04LM6CGSC	avialalble	
60V	≤3,0	IQE030N06NM5	avialble	IQE030N06NM5SC	avialalble	IQE030N06NM5CG	avialalble	IQE030N06NM5CGSC	avialalble	
80V	≤6,0	IQE050N08NM5	available	IQE050N08NM5SC	avialalble	IQE50XN08NM5CG	avaialble	IQE050N08NM5CGSC	avialalble	
100V	≤8,0	IQE065N10NM5	available	IQE065N10NM5SC	available	IQE065N10NM5CG	available	IQE065N10NM5CGSC	avialalble	
150V	≤22	IQE220N15NM5	available	IQE220N15NM5SC	availble	IQE220N15NM5CG	available	IQE220N15NM5CGSC	available	

Preliminary Information. Subject to change.

Source-down concept of Infineon at a glance: improved thermal capability especially for low-side switches and lower R_{th.IA}

Key features

R_{DS(on)} reduction up to 30% depending on the voltage class

Key benefits

- Decreased I²R losses
- Higher current capability
- Highest power density and performance
- Optimized layout possibilities
- Same performance as Super SO8 in smaller package
- Shrink of form factor
- Optimized PCB parasitics

- Superior thermal performance
- Decrease of R_{th,IA} and R_{th,IC}
- Better transfer of power losses
- Supports double side cooling (exposed clip)

- Two footprint versions available
- Source-down is easy to adapt on existing PCB
- Easy to Use Center-gate option enables optimized parallelization

Value

Higher system efficiency

System form factor reduction

More relaxed thermal management

Optimal device arrangement on the PCB

Part of your life. Part of tomorrow.